4" WDK Workshop on Product Structuring
October 22-23, 1998

Delft University of Technology

Delft, The Netherlands

MODELING CONFIGURABLE PRODUCT FAMILIES

Juha Tiihonen, Timo Lehtonen, Timo Seininen, Antti Pulkkinen, Reijo Sulonen, and
Asko Riitahuhta

Product configuration, product variation, product modeling, conceptual analysis, case study

Abstract

This paper presents a method for managing and modeling a product fam-
ily as a configurable product. The method enables efficient management of a
large number of product variants. The modeling is based on a recently pro-
posed conceptualization of configuration domain, which is a synthesis and
extension of the main approaches to configuration. The concepts of the con-
ceptualization are components, attributes, resources, ports, contexts, func-
tions and constraints. In addition to discussing the concepts, we give guide-
lines on using them. The conceptnalization was evaluated through a case
study of modeling rock drilling equipment.

The conceptualization matched the modeling needs in the case product.
Some improvements to the conceptualization are proposed on the basis of
the case study. The guidelines should also be extended and refined. Informa-
tion technology support for modeling was found to be necessary for full-
scale use of the conceptualization,

The conceptualization is primarily intended for representing configura-
tion models. However, we present some possibilities for utilizing the con-
ceptualization in the product development process.

1. Introduction

In many industries competitiveness requires efficient design and delivery of large numbers of
product variants. One-of-a-kind products or a large number of fixed products often lead to
excessive amounts of design and customer specific engineering, or problems with the manage-
ment of a large number of product variants.

In this paper we present a method for managing large product families as a configurable
product. The utilization of configurable products requires a systematic sales-delivery process
and modeling the product family as a configurable product. Instead of explicitly defining a set
of product variants in a product family, a configurable product has a configuration model that
contains all the information on the possibilities of adapting the product to customer needs. The
configuration model defines a set of pre-designed components, rules on how these can be
combined into valid product variants and rules on how to achieve the desired functions for a

29

customer. However, the product needs to be designed and systemized with configurability in
mind in order to make the configuration models manageable. Configurable products have
become popular with companies as a means to satisfy a wide range of customer requirements,
reduce costs and decrease the lead-times in the sales-delivery process [1].

In this paper we first briefly discuss the main characteristics of configurable products. We then
describe a recently proposed conceptualization [2] of configuration models, configurations and
requirements on a configuration. Guidelines on how the concepts are used in modeling are
given. Qur conceptualization unifies many of the different conceptualizations that have been
proposed in Al-oriented research on configuration (see e.g.[3]). These approaches are further
generalized on the basis of our experiences with real world products.

We demonstrate the conceptualization and evaluate it using a case study of modeling a product
in the field of mobile machinery. The conceptualization matched the modeling needs in the case
product. Some improvements and extensions to the conceptualization are proposed on the basis
of the case study. The guidelines should be extended and refined. Information technology
support for modeling was found to be necessary for full-scale use of the conceptualization.

The conceptualization is primarily intended for representing the product knowledge needed in
the sales-delivery process. However, we argue that the conceptualization can also be used in the
product development process. The main benefits arise from improved communication between
product development team and other functions of the company. It is also possible to use the
conceptualization in a Design For Configuration (DFC) tool.

2. Configurable products and configuration process

According to our definition a configurable product has the following basic properties:

¢ Each delivered product individual is tailored to the individual needs of an individual
customer.

» The product has been pre-designed to meet a given range of different customer requirements.

e FEach product individuwal is specified as a combination of pre-designed components or
modules. Thus, there is no need to design new components as a part of the sales-delivery
process.

» The product has a pre-designed general structure.

¢ The sales-delivery process requires only systematic variant design, not adaptive or original
design in the sense of Pahl and Beitz [4].

The product development and sales-delivery processes of configurable products are separate.
The product development process of a configurable product produces, among other deliverables,
an explicit configuration model. However, in relatively common industrial practice the
configuration models are only implicitly present as tacit knowledge in product experts’ minds or
in varied documents.

30

The configuration model is used repeatedly in the configuration process (Figure 1), which is a
part of the sales-delivery process, to produce configurations, i.c. descriptions of the product
individuals to be delivered. Product individuals are configured, i.c. adapted to meet given
customer requirements, on the basis of the configuration model and the customer requirements.
These adaptation activities are referred to as configuration tasks. The tasks are sometimes
carried out in two phases in the configuration process. In sales configuration, the product may
be partially specified in terms of functions. In engineering configuration, the result of sales
configuration is used as an input that is refined to a technical description of the system.

3. Modeling on the basis of the conceptualization

In this section we describe our conceptualization of configuration knowledge. We define the
main conceptual categories of knowledge related to product configuration. We then describe the
concepts in these categories and give guidelines for their use in modeling. For more detailed
definitions of the concepts we refer to [2]. We make the typographical convention that the
concepts are typeset with SMALL CAPITAL LETTERS when they are defined and examples of
concepts with arial font.

The conceptualization is intended to capture the product specification that is needed while
configuring a product. Note that it does not cover knowledge related to geometry, pricing,
optimality of configurations or knowledge needed during product development process. Neither
does it cover the construction and control knowledge on how to accomplish the configuration
task. There is little or no support for modeling of dynamic product behavior. Trying to model
these aspects with the conceptualization would probably lead to major difficulties.

3.1 Configuration knowledge categories

We distinguish between three categories of configuration knowledge: configuration solution
knowledge, configuration model knowledge, and requirements knowledge. Configuration
solution knowledge specifies a (possibly partial) configuration. A configuration does not only
represent the final outcome of the configuration process but also its intermediate stages. An
incomplete configuration describes a set of possible product individuals as it ieaves some
aspects about the product individual open. A specific configuration represents a single variant.

Configuration model knowledge is represented as configuration models. Thus, configuration
model knowledge specifies the set of correct' configurations of a product with respect to the
configuration model and requirements.

Requirements knowledge specifies the requirements on the configuration to be constructed.
Requirements knowledge can in our view be specified with the same concepts as configuration
model knowledge and configuration solution knowledge, although it plays a different role in
problem solving. For this reason, we explicitly discuss only configuration model knowledge and
configuration solution knowledge when describing the concepts. Note that in a broad sense the
set of different requirements that the product can satisfy are already set when developing the

! We omit here the precise definition of a ‘correct’ configuration. For a more detailed analysis of the
correctness of a configuration with respect to a subset of this conceptualization, we refer to [5].

31

product
development
process

=

g configuration
customer model

requirements

configuration #456 at TO

configuration process

single configuration for
a single order at
different times during
the configuration
process

configuration #456 at T1

specific configuration configuration #456 at T2

manufacturing
process

physical products

Figure 1. Configuration process
product and its configuration model. The requirements knowledge referred to here is a system-
ized representation of the requirements that can be set on an individual configuration. A
configurer must translate the actual requirements of a customer to the elements available in a
configuration model.

3.2 Modeling guidelines

A configuration model is based on an analysis of the product to be modeled. Therefore the
modeler should have a good understanding of the product. The product should be modeled by
product experts in the product development process. The configuration model is an abstraction
of the real world product family that is specifically meant for configuration purposes. For
example, it may suffice to model the different types of motors of drill rigs as simple undivisible
components although they are very complex assemblies. When a drill rig is configured, it is
enough to decide the type of the motor.

We consider object-oriented analysis and modeling (e.g. [6]) a good method for configuration
knowledge modeling with the conceptualization. In the first phase the primary concern is to

32

recognize the relevant entities. These are subtypes of the concepts in the conceptualization.
After that, and to some extent in parallel with the previous stage, relationships between the
entities and their properties are identified. Again, the conceptualization provides the relevant
properties and relations. In parallel with the previous steps, classification hierarchies of
component, resource, port and function types are constructed to capture common characteristics.
Constraints are identified and modeled.

For all the concepts, the rule is: use as few types and definitions in 2 model as possible while
making sure that the model 1) contains all the necessary knowledge, and 2) is understandable
and manageable. The second requirement is subjective and requires both practice and good
understanding of the product to be modeled and of its usage. It is also evident that different
needs lead to different models of the same product.

3.3 Classification hierarchy

3.3.1 Concepts

We introduce the concepts of a T¥PE and an INDIVIDUAL to clearly distinguish between the
entities that occur in configuration model knowledge and configuration solution knowledge.
Configuration knowledge is commonly discussed using terms that do not distinguish between
configuration model knowledge and configuration solution knowledge. For example, the
sentence “Car has an engine as a part” can be interpreted in two ways. As configuration model
knowledge the sentence can be understood as saying that every car individual must have an
engine individual as a part. As configuration solution knowledge it states that a particular
configuration includes a particular car individual that has a particular engine individual as a
part.

In the conceptualization a configuration can contain individuats of four different types in the
configuration model knowledge: component, port, resource and function. These are organized in
a classification hierarchy in the usual manner [6). A type has a set of property definitions such
as attribute, part and port definitions. A type inherits the properties of its supertypes in the
classification hierarchy. In other words properties from each supertype of a type are “added” to
those of the type itself. For example, type Motor may define properties common to all motors of
Ford Mondeos™. Types Zetec_2.0_16V™ and Endura_TD_1.8™ would have the common
properties defined by Motor, We say that Zetec_2.0_16V and Endura_TD_1.8 are direct
subtypes of Motor. Motor is a direct supertype of Zetec_2.0_16V and Endura_TD_1.8. All direct
subtypes of a type and their subtypes, and so on are collectively called subtypes of a type.
Supertypes are defined analogously. Multiple inheritance, i.e. having several direct supertypes,
may cause complications, which are ignored here.

A subtype may refine the property definitions it has inherited. Refinement of property defini-
tions is semantically based on the notion that the set of potential valid individuals directly of the
subtype is smaller than the set of valid individuals directly of the supertype. For example, type
Mondeo might define that applicable motors are the whole line of motors available. Type
Mondeo_CL might limit compatible motors to smaller ones and Mondeo_GLX to larger ones.

A type is cither abstract or concrete. An individual directly of a concrete tfype is accurate enough

to be used in an unambiguous configuration. An individual directly of an abstract type provides
only partial information on the real world entity it represents. A specific configuration contains

33

only individuals directly of concrete types to unambiguously specify a product individual. Note
that a concrete type may allow variation in the properties of the individual, for example different
individuals of a concrete type can have different attribute values.

3.3.2 Modeling guidelines

Classification hierarchies should be used when there is a set of types that have common
properties or that need to be referred to collectively in some definitions. A model can be made
more compact and maintainable by collecting the common properties to supertypes.

There are always several criteria for classification and one has to choose the most useful ones.
Classification in product configuration models should be constructed from the point of view of
configuration to facilitate easy construction and maintenance of configuration models. For
example, classification hierarchies of part library standards such as 1S013584 and classification
constructed for the purpose of a company’s general PDM may not be appropriate for configura-
tion models.

One should consider carefully which properties belong to a given type and which ones to its
subtypes or supertypes. Common properties should be presented as high in the classification
hierarchy as possible. Classification requires a good understanding of the domain being
modeled.

Abstract types naturally emerge when the knowledge common to a set of types is gathered in a
supertype. Quite often intermediate (abstract) types can be used to represent properties common
to a set of types, but intermediate types should not be created without proper justification. For
example, we do not recommend using intermediate types like “motors usable in Ranger_5007,
because this is best accomplished using part definitions (see Section 3.5).

3.4 Attributes
3.4.1 Concepts

Component, port, resource and function types can define attributes. Attributes represent the
characteristics of an individual of the type. Some attributes have fixed values and others can be
given a value. An 4TTRIBUTE DEFINITION consists of an ATTRIBUTE NAME, an ATTRIBUTE VALUE
TYPE and a NECESSITY DEFINITION. In a correct configuration an individual of the type having an
attribute definition has an ATTRIBUTE according to the attribute definition and either exactly one
(necessary attribute) or at most one (optional attribute) ATTRIBUTE VALUE of the attribute value
type. One particularly important attribute type is PHYSICAL QUANTITY such as length or mass.

34.2 Modeling guidelines
Typical attributes include physical dimensions of parametric components, surface material,

color, resistance, and capacity. For example, an engine could have weight and volume as
attributes.

Attributes can be used to parameterise components with respect to some properties. In some

cases one can create either one or a few parametric types or a relatively large number of non-
parametric types. In extreme cases one parametric component type can represent millions of

34

non-parametric types. A large set of similar component types in a model may indicate that the
set could be represented as a parametric component type.

3.5 Components and structure

In this section we first motivate the need for advanced product structure modeling. Then we
define the central concepts of component types, component individuals and their compositional
structure. :

One of the most fundamental aspects of any technical system is its hierarchical decomposition.
Fixed part lists or bills of material (BOM) with no support for variation are commonly used to
describe the structure of both fixed and one-of-a-kind products. This approach becomes
unmanageable when the number of different structures becomes very large.

Configurable products make the management of very large numbers, even millions or more, of
variants efficient. This is due to a configuration model defining its product variants in a
combinatorial manner. For example, a configuration model representing 4 options that one may
either include in the product individual or not and 5 choices with 4 alternatives for each choice
in effect represents 29x4° = 16384 variants. Changing one of the alternatives for one choice
would affect 4096 fixed structures if the product family were modeled as fixed products. In a
configuration model only one change could be required.

3.5.1 Concepts

A COMPONENT TYPE represents a distinguishable entity in a product that is meaningful for
product configuration. A configuration is composed of COMPONENT INDIVIDUALS of the
component types in a configuration model. Component types are either dependent or independ-
ent. Only individuals of independent types can serve as roots of the product structure.

The conceptualization directly supports generalized product structures with varying number of
mandatory, alternative and optional parts. A component type can define roles for its parts. These
roles are filled by component individuals in configurations. As an example, component type
Lamp has part roles Lampshade and a Stand. Each part role defines which component types are
viable alternatives for that part role. For example, the lampshade may be a blue lampshade
LsBlue or a black lampshade LsBlack. Component individuals are assigned to fill the part role in
a configuration. For example LsBlackd56 fills the role Lampshade of Lamp123. No other
component individuals than those of the types defined to be possible lampshades may fill the
lampshade role. A component individual can only have the parts defined by roles in its type. For
example, one cannot have a configuration where an umbrella reflector is a part of a lamp if a
corresponding part role has not been specified.

A component type specifies its part roles as a set of PART DEFINITIONs. A part definition
specifies a PART NAME, a SET OF POSSIBLE PART TYPES and a CARDINALITY. In addition, a part
definition includes an EXCLUSIVITY DEFINITION and an optional HAS PART INHERITANCE DEFI-
NITION. For brevity, the latter two are not discussed in this paper. The part name identifies the
role. The possible part types indicate the component types whose component individuals are
allowed to occur in the role. The cardinality specifies how many component individuals must

35

occur as parts in the role. Cardinality is expressed as a set of non-negative integer ranges. If one
of these ranges includes 0, the part is said to be optional. Otherwise it is mandatory.

Examples of part definitions in types include: A Car has an Engine and a Chassis as parts and
there are several alternatives for each. A Computer has a part display unit that can be one of the
following: Brand A 15" Flat, Brand A 17” Super or Brand B 19" HD.

3.5.2 Modeling guidelines

A coherent whole in a product should be modeled as a component type when it

(1) is distinct in the sense that it either may or may not appear in the configuration, or
(2) is an alternative for something else, or

(3) refers to a well-defined part of the product,

Usually one should avoid modeling things that are common to all variants or fixed substructures
of a component type. Common parts and fixed substructures are usually irrelevant for the
configuration view of the product and can usually be managed in an MRP system.

A part definition should be included in a configuration model if it is natural to think that an
individual of component type A contains an individual of component type B, and both A and B
are integral wholes whose modeling is justified by the reasons given above. In general, the parts
of a whole should be separable and have a distinct identity. Usually the parts of a whole are
somehow different from each other. The difference can, for example, be related to the role,
function, or type of the part. Most part definitions are meaningful in the configuration sense
only if a choice of a component type or number of parts can be made. However, quite many
products include a mandatory “base unit” that can also be modeled. It is sometimes difficult to
decide whether component type A is part of component type B or vice versa. In this case, there
often is a component type C that both A and B are parts of.

Note that we model product families, assemblies, sub-assemblies and atomic parts uniformly as
components. Examples of mostly mechanical components include engines, gears, elevator cars,
and chassis. Electrical components include computers, microprocessors, memories, ASICs, and
PCBs. Non-physical component types include software systems, software modules, applets, and
different insurance policies.

3.6 Ports
3.6.1 Concepts

Ports are used to model connections and compatibilities between components. The idea is that
component individuals can be connected only if they have compatible interfaces. We model
connection interfaces as ports. 4 PORT TYPE is a definition of a connection interface. A PORT
INDIVIDUAL represents a “place” where in a component individual some other port individual
may be connected. A port type has a COMPATIBILITY DEFINITION that defines a set of port types
whose port individuals can be connected to the port individuals of that port type. In addition, a
port type defines a set of CONNECTION CONSTRAINTS. Only port individuals that satisfy the

36

connection constraints defined by their port types may be connected to each other. A connection
constraint may also specify that port individuals with given attribute values and of particular
type can or must be connected. Connection constraints are a special case of constraints (see
Section (.).

A component type specifies its connection possibilities by PORT DEFINITIONS. A port definition
specifies a PORT NAME for the port, a SET OF POSSIBLE PORT TYPES, a CARDINALITY and additional
connection constraints. Cardinality expresses the possible number of port individuals as a set of
ranges. A port definition can refine the set of compatible port types from those specified by the
port type using the .

3.6.2 Modeling guidelines

The connections modeled with ports can be physical or logical. Ports are especially suitable for
modeling compatibility expressed as interfaces, which is often the case for modular products.

If component individuals do not have compatible ports, they cannot be connected, but they can
still exist in the same configuration. In effect, components are by default compatible but not
connectible. Compatibility can be restricted to component types with compatible ports by
requiring connections using constraints.

Note that a component type can offer alternative port types, which allows configuring the
interface by selecting a port type. Port definitions can also be used for limiting the number of
connections, because the number of port individuals can be specified and at most one connec-
tion can be made to a port individual. In some cases only the number of connection points or
available space for connections is relevant without the need to model exactly the connections
between the ports. This type of phenomenon may be better modeled as a resource interaction
{see below).

Examples of connections that can be modeled using ports include a motor requiring a specific
type of a power source. This can be modeled with appropriate in and out port types for the
motor and power source and defining that only certain kinds of in port types fit certain types of
out ports. Another example is a computer that can be plugged to a printer if both of them have a
parallel port. The parallel port is an interface which is modeled as a port.

Quite often actual connections require connecting components like cables or pipes. It may be
difficult to decide whether a connecting component needs to be modeled or can be abstracted
away. This depends on whether the connecting component has alternative types, is parametric or
has some other reason for being specified separately.

It may sometimes be difficult to decide whether a component type is a part of another or is
connected to it via ports. One distinguishing criterion for this is that a connection between the
port individuals of two component individuals is symmetric. In other words, it seems intuitively
clear that if component individual A is connected to component individual B, then B is also
connected to A. On the other hand, the has-part relation between component individuals is
usually interpreted as antisymmetric, i.e. if component individual A has-part component
individual B, then B must not have A as a patt.

37

There is also another dependency between connections and parthood: connections are often
found between components that are parts of the same whole. Therefore, if there is set of
component types that are parts of the same whole in the model, one should check whether there
are some connections between these component types that are relevant for configuration and
should be modeled. In the other direction, if there is a set of component types in the model that
can be connected to each other, it should be checked whether they should be a part of some
common whole.

3.7 Resources and contexts
3.7.1 Concepts

In this section we define resource-oriented concepts, which are needed for modeling the
production and use of some more or less abstract entity. The underlying idea is that some
component individual(s) produce some resource and other component individual(s) use it.

Resource production and use must be either satisfied, in which case the quantity of resource
produced must be equal to or greater than the quantity of the resource used or balanced, in
which case the quantity of resource produced must be equal to the quantity of the resource used.

Basic resource concepts offer a simple mechanism for modeling resource production and use
without regard to product structure or connections, i.¢. resources are considered to be globally
available. The conceptualization adds a context mechanism that makes it possible to limit
resource availability to some specific set of component individuals. The motivation is that
unrestricted flow of resources from producers to users may in some cases be too simplistic to
model a product adequately. A resource is only available to component individuals that are in
the same context as the producing component individual.

In the conceptualization, a RESOURCE TYPE defines the properties of the resource. A resource
type has a COMPUTATION DEFINITION that specifies whether the resource should be satisfied or
balanced and a UNIT OF MEASURE. In addition, the computation definition specifies how the
production and use of the resource type by several component individuals are combined,
possibly taking into account production by sub- and supertypes. This is done through a TOTAL
PRODUCTION FUNCTION and a TOTAL USE FUNCTION. The prototypical case is that the quantities
of the resource produced or used are added together to get the total quantity.

A component type specifies by PRODUCTION DEFINITIONs and USE DEFINITIONs the resource
types it produces and uses. Both production and use definitions specify a SET OF POSSIBLE
RESOURCE TYPES produced or used, a PROPERTY DEFINITION, a MAGNITUDE RANGE and a
CONTEXT DEFINITION. The produced or used resource must be of one of the possible resource
types. The property definition is a special case of constraints (see Section 0.) that specifies a
restriction on the attribute values of the resource produced or used. The magnitude range
specifies how much of the resource component individuals produce or use.

3.7.2 Modeling guidelines
Quite often when a component of one type requires a component of another type for the whole

to operate correctly, the underlying reason is that there is a resource which is provided by the
first and used by the second. Another indication of a phenomenon that can be modeled as a

38

resource is that there is a flow of some thing from a component type to another. However,
resources are not intended for modeling the dynamic behavior of a system. Resource concepts
are useful for modeling the following phenomena:

» Individuals of a component type(s) consume some amounts of abstract or physical
resources that individuals of some other component type(s) produce. Examples include
discrete physical locations, space in rack, slots, electric power and current, disk space, torque
or power produced by motor.

» Individuals of a component type(s) require the existence of an abstract service without
regard to who is producing it. Typically these are found in computer systems and similar
devices. Abstract services are often shared in the sense that the existence of one producer is
enough to satisfy all users. Examples include availability of a protocol or availability of an
API (Application Program Interface).

¢ Individuals of a component type require the existence of an individual of other compo-
nent type in the configuration. This can be modeled as abstract services by creating a re-
source type that is produced by the required component type(s) and consumed by the re-
quiring component type(s). Note that this is a practical way of associating two sets of com-
ponent types to each other: If there is an individual of the first set in the configuration, there
must also be an individual of the other set. The number of individuals from these sets can
also be easily balanced, if required.

Resource concepts are not intended for situations where there is a need to model explicitly the
connections between component individuals producing and using resources. Another way of
telling connections and resource interactions apart is that connections are symmetric, whereas
resource interactions are asymmetric (from the producer to the user, but not vice vetrsa).

Property definition in resource production and use definitions can be used, for example, to
model different qualities of electricity. Effectively this enables permitting or rejecting the use of
a resource on basis of its attributes.

Contexts are used in situations where there is an additional condition that specifies from where a
resource is obtained or where it can be used. An example is a product with two subsystems that
each have their own power supplies. Power supplied within one subsystem cannot be used
outside of it. Although one subsystem may have surplus power, it is not available to the other
subsystem. Unexpected results may occur if a configuration can have several top-level
components that are intended to be roots for independent product individuals, because resource
interactions between them are possible. A context should always be specified to keep resources
within a product individual in such a configuration.

3.8 Functions

381 Concepts

In this section we define the function and function structure concepts for representing the
functionality that the product individual provides to the customer, the user of the product or the

environment in which the product individual will be situated. The concepts introduced so far are
called technical concepts since they have risen from the technical point of view on the product.

39

A complex product is often configured in two stages, as discussed in Section 2. A functional
specification may, for example, specify that a telecommunications switch must provide access to
at least 1000 subscribers. This function is implemented by a combination of component
individuals in certain relations to each other. These relations may be expressed using the
technical concepts defined above.

The basic concept in the functional view is FUNCTION T¥PE. We call a function individual a
FUNCTION. A PART DEFINITION of a function type corresponds to a part definition of a compo-
nent type with the exception that the possible part types must be function types. It is used to
represent the hierachical breakdown of the function to subfunctions.

The relation between technical concepts and functions and their properties is expressed as
IMPLEMENTATION CONSTRAINTS. They are a special form of general constraints (see Section 0.)
Several different combinations of technical concepts may implement the same functions and one
combination of technical concepts may implement several functions.

There can be constraints on how different functions and their attribute values can be combined.
'These SPECIFICATION CONSTRAINTS are a special case of the generic constraints (see Section 0.}
that oniy refer to functional concepts. They are used similarly as other constraints to restrict the
combinations of functions that a product can implement.

3.8.2 Modeling guidelines

A function type is typically an abstract characterization of the product that a customer or sales
person would use to describe what the product can be used for, or what need the product
satisfies. Another, a possibly more engineering-oriented source of function types is the set of
effects that the product causes in its environment. Functions are usually not conveniently
defined by the technical concepts. Note that only functions of function types that are defined in
a configuration model can be used for describing the functional requirements on the product. All
customer requirements are not necessarily described as functions: also constraints, component
individuals with attribute value assignments, resources and port individuals can be used. A
combination of these forms the systematized requirements knowledge related to a configuration.

Functions are distinct from resources, since the latter are meant to be used for defining the
technical rules that the product must conform to. In addition, a resource type is produced by one
or several component types in separation, whereas a function type may be produced by an
arbitrary combination of component types and their relations.

Implementation constraints are used to define when the technical part of a configuration
implements some functions. An example of an implementation constraint in the context of the
case product (see Section 4) would be that the function type ‘rough-terrain-operability’ is
implemented by the configuration having two component individuals of type ‘three-edge-track’
and one component individual of type ‘winch’. Another example of an implementation
constraint from the PC domain is that the ability to use a MS Word7® word processor requires
the configuration to have enough memory, a correct operating system and a fast enough
processor.

Specification constraints are used to rule out undesirable combinations of functions. Typically
they originate from marketing or product policy decisions. In our view, specification constraints

40

should not be used to rule out technically invalid
combinations. Rather, these should be ruled out with -
technical concepts.

3.9 Constraints
3.9.1 Concepts

Constraints are a general mechanism for specifying the
interdependencies of configuration related types in the
configuration model. A constraint is a formal rule,
logical or mathematical or a mixture of these, which
specifies a condition that must hold in a correct
configuration. We assume the existence of a constraint
language with enough expressive power to express the
desired concepts. The only (obvious) restriction we set
on a constraint language is that it must be possible to
evaluate whether a constraint is satisfied, violated or Figure 2. A Ranger drilling machine
its truth-value is unknown with respect to a given configuration. Special cases of constraints,
has part inheritance definitions, property definitions of resource types, connection constraints,
specification constraints and implementation constraints, have already been mentioned. A
constraint language should provide special support for specifying these types of constraints.

The conceptualization includes a mechanism for defining subsets of constraints, called
CONSTRAINT SETS, that limit the allowed configurations from specific points of view. A con-
straint belongs to at least one constraint set. Correctness of a configuration can be checked from
a given point of view by checking whether the corresponding constraint set is satisfied.

3.9.2 Modeling guidelines

Constraints are meant to be used when other constructs of the conceptualization do not capture
the intended meaning adequately or conveniently. It is possible that for some slowly evolving
products a simple interaction that could be captured by deeper resource or port modeling can be
modeled more easily as shallow knowledge using a simple constraint.

Technical and marketing constraints are examples of constraint sets. The technical constraints
limit the configurations on the basis of which combinations are technically feasible. Marketing
constraints limit the combinations on the basis of product policy, i.e., which of the technically
feasible combinations a company is willing to sell. Technical constraints may be further divided
into, for example, technology and manufacturing constraints.

4. Example

In our example, we define a configuration model using the conceptualization. We use a heavy
rock drilling machine produced by Tamrock Corp. as an example of a configurable product. The
Ranger series machines look like tracked excavators (Figure 2). A Ranger consists of a body, a
tracked crawler base, a boom and drilling equipment. The body is divided into power unit,
cabin, fuel oil tank, and hydraulic oil tank.

41

[
f
Fuel tank) Drive Crawier
& battery case l.i‘]""'”"" Cabi Crawler u
} ' base ; .
—

1

m Cabin Drilling Calel_'pillar
d madute drive |

language:

Fue! filling {GB.D/FIN, RANGER Tracks
pump M.OKF.E, * -
P.LCR})
0.1}
Extra fuel
filing pump

l Nomnal J| High capaclty
pump pump

i -Afr conditioni
En?me tp A tark————
m

[
__‘_l
Engine Ranger 11)] [ﬂ
block tank set Air Gond
DA
HDA

L m HL500 HLEGO HL700
}——-—l 1 1 1
Tank Tank Tank
. [USA AUS EURO DA
Engine R
1

Engine R ACS | | ACE87 1
108 KW wio emission control | 119 kW
\ YN 8K 108 kw 135 kW
Engine 5 [-135 kW » Powerl

Figure 3. The Ranger configuration model

The Ranger configurable product family has three vanations in the main functional property
(drilling dimension) and numerous variations of minor details. Theoretically there are over 200
000 possible variants presented in the configuration model. In the real Ranger there ar¢ many
more, but Tamrock Corp. regards 72 of the possible variants as substantially different product
variants — this variation is also presented in the developed model.

In Figure 3 a substantial part of the configuration model of Ranger is presented. Since it is a
configuration model it does not include the knowledge needed in constructing and designing the
Ranger. The product is modeled mainly with part definitions. This means that components in the
configuration model define the roles of their parts and what types of components are needed in
these roles. Note that in the model Ranger body has been abstracted away. The notation used in
the figure can be found in Appendix A.

The part definitions define the possible compositions of a Ranger individual. For the sake of
simplicity only the parts that are important from the configuration point of view are presented in
the model. As an example of part definition, Ranger has part role Power unit, which is filled
with an instance of component type Power unit assembly. The cardinality [1] means that there is

42

Power unit
assembly

’ .
En’gi ne p ATank Air conqitioning
1 |
e (1l (]

Engine Ranger Ranger
block tank set Air Cond
Tank Tank Tank
USA ‘ L AUS || EUROQ l ACS ACB87
Engine R Engi 'ﬁ
gine _ ngine S 135 KW

108 KW

Engine R 119 KW
w/o emission control

Figure 4, The Ranger Power Unit Assembly

exactly one Power unit assembly in Ranger. The Power unit assembly has three part roles
Engine, PA tank and Air conditioning (see Figure 4). The role Engine could be filled with an
instance of abstract component type Engine block or one of its subtypes. Here the component
type Engine block is modeled as a supertype of the three concrete component types Engine R,
Engine S, and Engine R w/o emission control. These types inherit the properties of engine
Engine block, but differ in some aspect, e.g. they have different hydraulic pumps and differences
in tuning for emission control.

Attributes are presented as shown for the Cabin (Figure 3). The language of the signs in the
cabin may be different. This is represented by the Cabin type having attribute Language with
several alternative values.

As mentioned earlier Ranger has three variations in its main function. The variation is caused by
the capability to drill holes of different diameters. This capability is determined by the Rockdrill
selection (see Figure 5). The configuration task is usually started with defining the requirements
for the main function and selecting the correct type of rockdrill for that. E.g. the required hole
diameter might be from 72 to 96 mm and a suitable selection the rockdrill HL600. We have
ignored these aspects in the Ranger configuration model for brevity.

The type of feeder is dependent on the type of rockdrill. This dependency is modeled using port
types and their compatibilities, as the rockdrill needs to be connected to mechanically the boom.
For this purpose, port types boom attachment BA and drill attachment DA are introduced. BA
represents the connecting interface for connecting a boom to the drill and DA represents the
interface for connecting a drill to the boom. Both types are abstract types and they both have
two concrete subtypes. BA has subtypes light boom attachment LBA and heavy boom attach-

43

Connect
Drill
attachment
and
Rockdrill

Suction

Drilling boom assembly i.__Dust 1
BA DA removing ’ head

Boom and Feeder t Rockdrill ﬁT
Hea | [LBA toa | frHoa i Always
S — S S with [11
BA
; foom & g iose LDA E Rockdril

Feeader reel

[0,1); Hose reel

Boom Drill

attachment
1

M1 {1

Boorn DA : S] HL500 HL600 g HL700

HDA

108 kW 108 kW 135 kKW

Figure 5. Drilling boom assembly

ment HBA. DA has subtypes light drill attachment LDA, and heavy drill attachment HDA
(Figure 5). A port of type DA is compatible with BA, and a port of type DA is compatible with
BA. Compatibility is refined in the subtypes so that LBA and LDA are compatible with each
other. HBA and HDA are also mutually compatible. Effectively this means that heavy and light
versions of boom and drill interfaces cannot be mixed.

Component type Rockdrill has a port of type BA and component type DA has a port of type DA.
These are refined in their subtypes to LBA and HBA, and LDA and HDA, respectively. In effect, a
LDA is compatible with and can be connected to only the HL500 rockdrill, whereas a HDA is
compatible with and can be connected to both HL60O and HL700 rockdrills. There are no
connection constraints in this example, but there is a general constraint that the Rockdrill must
be connected to the Drill attachment. In addition, there is a constraint that a Hose reel compo-
nent is always needed with the DA component.

The power requirement of rockdrills varies. This is modeled by using resources. The engines
produce certain amounts of resource type Power which has unit kW (Figure 4). The rockdrills
use this resource, represented in the bottom of Figure 5. The computation definition for Power is
satisfied, which means that Power must be produced in at least the amount it is used. The
contexts of Power production and use by the engines and rockdrills is in this model All, which
means that any rockdrill could use Power produced by any engine within the Ranger. This has
no significance in this particular model because (according the cardinalities) there is always
only one engine and rockdrill in a configuration, assuming that there ts only one Ranger
individual. In other product families produced by Tamrock the number of (external) power
sources and rockdrills varies, in which case defining contexts for the resource production and
use would likely be necessary.

5. Discussion

5.1 General

Some concepts of the conceptualization overlap in the sense of formal expressiveness. For
example, ports could be used to model part definitions, and a general constraint language alone
could have enough expressive power for modeling configuration knowledge. In our view, the
clarity of configuration models should not be compromised by minimizing the number of
concepts. Higher level concepts for representing typical forms of configuration knowledge
result in a more compact and understandable representation of a configuration model. We
believe to have struck a good balance between minimizing the number of concepts and making
configuration models understandable. This facilitates the maintenance of the knowledge by
product developers or product managers. It is also possible to model a phenomenon in several
ways with the conceptualization. The guidelines given in this paper are intended to help in
deciding which modeling concepts to apply.

The conceptualization of product structure is quite close to generic bills-of-material (GBOM)
(e.g. [7]). These approaches typically add to the traditional BOM concepts optional and
alternative components and rules on how the alternatives and options can be combined. The
main differences to the GBOM approaches are that this conceptualization

e utilizes concepts such as types, individuals and inheritance from object-oriented modeling
approaches (e.g. [6]) that improve the understandability and maintainability of models,

¢ allows modeling connections and functions of a product,

» includes a more sophisticated means for expressing the rules on how the components can be
combined, and

» represents part roles explicitly via part definitions.

Part definitions allow referring to a part of a whole without knowing the actual part to fill that
role. In our view this is very important. For example, it is possible to specify that two parts must
be connectable without knowing what the types of the parts will be.

We model product families, assemblies, and indivisible building blocks as components. We
recognize that there is a need to distinguish between at least these different types of entities, but

45

our component conceptualization can be used to represent their characteristics. These kinds of
concepts can easily be defined on top of our component concept.

According to our experiences, a number of configurable products have been modeled success-
fully with only two-level structures: wholes and their undivisible parts. We believe that most
part structures in configuration models of configurable products are relatively shallow, due to
the fact that the variation is accomplished through choosing the top-level components whose
detailed structure is not variable. In the Ranger example, we have a three level structure: the
Ranger, its main assemblies and their parts. If a product is not easy to configure, deep structures
may be needed to represent minor parts that are affected by configuration.

Configuration models have been modeled as bond graphs [8]. Our port conceptualization is less
expressive as we do not try to capture conversion laws, dynamic physical behavior etc. physical
processes. The port mechanism for connection and compatibility modeling is relatively simple
but we believe that it suffices for configuration purposes. Ports can be used to establish binary
connections between component individuals, and constraints can be used to propagate values
from “in-ports” to “out-ports”, possibly with some transformations. However, the conceptuali-
zation has no direct support for resource flow through component individuals via port individu-
als, and transitive connections are not directly supported. For example, pipelines that span
across several component individuals cannot be directly modeled. Possibilities offered by bond
graphs could be used to add expressiveness to the conceptualization.

Interfaces between compoenents tend to live longer than individual component types. When
compatibility is modeled through stable interfaces using ports, long term management of
configuration models becomes easier. Like port types, resource types may live longer than
individual component types with analogous effects to maintainability. To facilitate more
advanced long-term management, the conceptualization should be extended with concepts from
configuration management and product data management.

5.2 Case study experiences

Classification hierarchy was found to be useful and it was used extensively in the example,
particularly for component types. Multiple inheritance was not required. We defined only few
attributes in the example because the company uses few parametric components and because we
modeled few technical details of the component types. We believe that a full-scale configuration
model for Rangers would include many more attributes to cover the technical details. Note that
many legacy systemns where product data is managed do not support atiributes, which is
reflected in the material we received and subsequently in the configuration model.

Part definitions were found to be a convenient way of representing the product. The generic
structure describing Rangers was easy to construct. Similatity requirements for multiple parts
would be an useful enhancement to the conceptualization. For example, Rangers have two
tracks that must be identical.

Ports were used relatively little in the example. It was somewhat difficult to identify relevant
ports on the basis of the available matetial. Ports would probably be easier to use if the
interfaces of the component types in the product were originally set to high priority and thus
better documented. As with ports, resource modeling was not used in Tamrock and similar

46

observations apply. Nevertheless, some natural resource interactions in the product were
identified, of which the resource “power” is an example.

The example required relatively few general constraints. Thus, for this product our conceptuali-
zation covered the typical configuration phenomena fairly well. It should be further studied
whether this result generalizes to a larger set of different kinds of products.

A computer-based tool directly supporting the conceptualization is a prerequisite for using the
conceptualization successfully in real-world scale examples. Manual modeling is too tedious
and offers no support for testing a model and configurations. In addition, simplicity is a
challenge for the presentation and understandability of configuration models. A computer-based
tool would allow a clearer graphic representation of configuration models. For example,
hierarchical browsing of a configuration model, e.g. based on the product structure, separate
views for classification, part definitions, ports and resources wouid enhance the readability of
configuration models.

5.3 Ideas for improving the model and future work

There is a need to investigate several enhancements to the port mechanism. Examples include
decomposition of ports to sub-ports, assignment of ports or sub-potts to implementing compo-
nents and refinement of connections between ports to components. For example, the DA
component type of the example in Section 4 could be modeled both as a port and a component
type depending on the usage and point of view chosen. Flexible mechanisms to model compo-
nents that are also ports or connectors seem to be needed.

Context concepts could be useful with other concepts than resources also, but currently they can
only be used in association with resources. For example, connections via ports or applicability
of constraints could be restricted to a context.

Constraint schemes and a specific constraint language for expressing common types of
constraints would be useful. Examples include connection, incompatible-with and requires types
of constraints. A table based constraint representation would be useful to tepresent tightly
connected configuration decisions.

An important part in modeling some products is to ensure that connections between some parts
are made, For example, it may be required to connect a fuel pump to a motor or a disk unit to a
disk controller. Our conceptualization allows this to be expressed as constraints, but there is no
direct support.

5.4 Relationship to product design and development

Generally, design process can be seen as an interplay between functional and physical domains
[9]. It can be understood as a composition of two different activities: synthesis and analysis,
which are related to the domains. The physical system is synthesized on the basis of the required
functionality. Functionality can be analyzed on the basis of a description of the physical system
[10]. Design process usually proceeds from general to details, which can be modeled with the
conceptualization.

47

The conceptualization does not directly provide means for modeling physical relationships such
as geometry usually used by common design tools like mechanical CAD. The conceptualization
could, in principle, provide limited support for design decisions on the basis of already modeled
knowledge. For example: given a partial configuration model and a component library modeled
on the basis of the conceptualization, one could find suitable components by using inference
from interfaces, resource behavior and functions. However, because our conceptualization is
based on the assumption that all relevant knowledge is modeled, little support can be provided
for decisions required in original and adaptive design.

Andreasen and Hein [12] have modeled the Integrated Product Development (IPD) process as a
composition of six phases: (0) recognition of need, (1) investigation of need, (2) generation of
product principle, (3} product design, (4) production preparation, and (5) execution phase. In
our view, configuration models could be utilized in several phases of the IPD process. In phases
(2) and (3), a preliminary configuration model consisting mostly of functions, components, part
definitions and interfaces modeled as ports could be used to communicate the preliminary
properties of the new product family to sales, marketing, design, and production. The creative
design in the product design phase (3) is not supported by the conceptualization. In the
production preparation and execution phases (4) and (5) a configuration model facilitates
transferring information on the new product especially to sales and persons responsible for
engineering configuration. Because the configuration model is built during the three first phases
of the IPD process, some delays caused by late modeling may be eliminated.

The conceptualization could serve as a (partial} basis for a DFC (Design For Configuration)
tool. The configurability and modularity of the product can be analyzed on basis of its configu-
ration model. For example, module coupling and configuration related interfaces could be
analyzed through ports and connection constraints. The number of configuration decisions can
be determined and the complexity of function to technical configuration mapping can be
characterized. As the usual modeling and evaluation tools in the DFX field [11], the conceptu-
alization supports relevant modeling and enables evaluating of the design.

6. Conclusions

Managing product families consisting of a large set of product variants as configurable products
requires defining a configuration model. We presented a conceptualization for configuration
models and gave guidelines on using the concepts. The conceptualization was evaluated by
modeling a case product and was found to cover the relevant modeling needs fairly well.
However, several improvements to the conceptualization were identified. For example, more
elaborate mechanisms for connection modeling would be useful. The concepts and modeling
guidelines for them should be extended, refined, and further validated.

Information system support is necessary for modeling real-world-sized products. Modeling with
the conceptualization sets new requirements for the designer. In addition to having a good
understanding of the product, a designer should be familiar with object oriented modeling,

In our view the conceptualization can also be used in the product development process. The

main benefit there would be improving communication within the product development team
and to other functions of the company. The benefits also include the use of the conceptualization

43

to document the knowledge on the product functions, structure and the related design constraints
during the product development.

References

(1]

[2]

3]

[4]

(5]

[6]

[7]

(8]

[9]

(10]

(11}

[12]

Tiihonen, J., Soininen, T., Ménnistd, T. and Sulonen, R. Configurable products - Lessons
learned from the Finnish Industry. In Proceedings of 2nd International Conference on
Engineering Design and Automation. Integrated Technology Systems,Inc., 1998.

Soininen, T., Tiihonen, J., Ménnist6, T. and Sulonen, R. Towards a General Ontology of
Configuration. In Al EDAM (Artificial Intelligence for Engineering Design, Analysis and
Manufacturing), Special Tssue on Configuration Design, Vol. 12, No. 4, 1998.

Faltings B. and Freuder E. Configuration—Papers from the 1996 AAAI Fall Symposium.
AAATI Press Technical Report FS-96-03. AAAI Press, 1996.

Pahl, G. and Beitz, W. Koneensuunnitteluoppi. Springer Verlag and Metalliteollisuuden
Kustannus Oy, 1990. Translation of Konstruktionslehre, Handbuch fiir Studium und
Praxis, Springer Verlag, 1986,

Peltonen, H., Minnisté, T., Soininen, T., Tiihonen, J., Martio, A. and Sulonen, R.
Concepts for Modelling Configurable Products. In Proceedings of European Conference
Product Data Technology Days 1998. Quality Marketing Services, Sandhurst, UK, 19938.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W. Object-Oriented
Modelling and Design. Prentice-Hall, Inc., Eaglewood Cliffs, 1991.

van Veen, E. Modelling Product Structures by generic Bills-of-Material. PhD thesis,
Technische Universiteit Eindhoven, 1991.

Snavely, G. L. and Papalambros, P. Y. Abstraction as a configuration design methodology.
Advances in Design Automation. VYolume 1, 1993,

Suh N. The Principles of Design. Oxford University Press, New York. 1990

Erens F., Verhulst K. Architectures for product families. Proceedings of the 2" WDK
Workshop on product structuring. June 3-4 1996. Delft University of Technology. pp. 45~
60

Tichem M. A Design Coordination Approach to Design for X. PhD dissertation. Delft
University of Technology. 1997

Andreasen M.M., Hein L. Integrated Product Development. IFS Publications Ltd. /
Springer-Verlag, London. 1987.

Acknowledgements

We gratefully acknowledge the financial support of Technology Development Centre Finland
and Helsinki Graduate School of Computer Science and Engineering (HeCSE). We thank
Hannu Peltonen for his comments on how to improve the presentation of the paper. We thank
Tamrock Corp. for providing us access to Ranger documentation that made the modeling effort
possible.

49

Juha Tiihonen, Timo Soininen,
Reijo Sulonen

Helsinki University of Technology
TAI Research Centre

Product Data Management Group
P.O. Box 9555

FIN-02015 HUT, Finland

tel . +358-9-451 3242

fax. +358-9-451 4958
Juha.Tiihonen@hut.fi
Timo.Soininen@hut.fi
Reijo.Sulonen@hut.fi

Appendix A: Notation

Q-n%[n.m} Part definition
<— IsA -relation (classification)
Abstract component type
Concrete component type
2
[n,m] Cardinality

50

Timo Lehtonen, Antti Pulkkinen,
Asko Riitahuhta

Tampere University of Technology
Machine Design Laboratory

P.0O. BOX 589,

FIN-33101 Tampere, Finland

tel. +358-3-365 2627

fax. +358-3-365 2307
tle@me.tut.fi
pulkkine@me.tut.fi
aor@me.tut.fi

E Port type

......... Compatibility
name
Port type
Port definition
[h,m]
© Resource type
—amount-— Resource production
and use
Constraint

