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1. Introduction

In many fields of classical mechanics there is the need of specifying the attitude of a rigid body.
Classical examples can be found in the dynamic analysis of gyroscopes, spatial mechanisms. In
computer graphics the need of simulating the movement of objects, or the point of view displacement,
regquires a mathematical tool for the representation of the attitude of bodies. The purpose of this paper
is somewhat tutorial. However, it includes some ad hoc derived analytical expressions.

2. Mathematical preliminaries
The attitude of a body relative to another is mathematically defined by a coordinate transformation
between reference frames attached to each body. Although described through a matrix transformation,
it is necessary to distinguish between transition and rotation. In particular, with reference to the
schemes presented in Figure 1:
transisition is the process of changing, for the same vector, the attitude of a coordinate
systems,
rotation is the process of changing the attitude of a vector within the same coordinate
system.
In order to transit from the initial coordinate system (labelled with subscript 0) to the final coordinate
system (labelled with subscript 1), we write:

1%

Il=[hivey @whee{rn}={x v, z} aa{n}={x vy, z}"
1
|Zofo

In order to express the new coordinates (labelled with subscript 1) of the rotated vector in terms of the
old (labelled with subscript 0) of the same vector prior to rotation, we write:

{rl} = [R]é{ro} (2). Spherical motions are usually described by means of the previous tranformation.

The following relation [RT]E =[T]f) (3), can be obtained through inspection. Since al the

transformations  introduced  preserve  the  rigidity, marix [R] is orthonorma  (i.e
T _ T _

[RI'[R]=[RIR[" =[1]).

In all the subsequent algebraic treatment the cartesian systems are assumed right-handed. Matrices are

not the only mathematical tools for expressing rotations or change of coordinates. However, for space
reasons we limit this review to matrix formulas only.
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3. Review of methods

In genera a minumum of three parameters are required to describe the attitude of a body fixed
coordinate system 0- xyzw.r.t. an inertidl O- XYZ coordinate system. However, in some cases,
redundancy can be used to avoid undeterminacy.

Figure 1. Nomencatur e of angles

3.1 Euler angles

Likely this is one of the oldest approach for the description of the body attitude. The angles are
defined through an ordered sequence of rotations. Euler angles involve one body coordinate axis
twice. Six sets of Euler angles can be distinguished. However, we will focus only on the sequences
involving two rotations about the z axis (see Table 1)
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Table 1. Definition of Euler angles

Rotatio First kind Second kind
n

1 Yy - 7 Yy - 7
2 qa- % V-,
3 f-z f-z

It isnot difficult to show that, respectively, the transition matrices are for the first kind of Euler angles:

€C/G -GS  $G-CGS S50
=8 cc-sce -ss-¢6s s6¢
B s - Gy, C, B

and for the second kind of angles:

66,06 -5  SCG*CS -SGU

[[f=§ccs-se -scs+e6  ss
B csS 5§, c, 8

3.2 Cardan angles

The three rotations involved in the definition of the Cardan angles are those about each axis of the
body fixed cartesian reference system.

Table 2. Definition of Cardan angles
otation n n n n n n
Rotati 1%kind  2Ykind 39kind  4"kind  5"kind  6"kind

1 X-%X h-y, z-z x-%, z-z h-y,
2 h-y, z-z x-%x z-z h-y x-Xx
3 z-z, X-% h-y, h-y, x-x, z-z

As shown in Table 2, six types of Cardan angles can be enumerated. Thus, the transition matrix, for
each enumerated set, isreported in the following:

1% kind of Cardan angles
g% ¢S *SSC SS - sthczg
[h=&cs cc-sss sc+6ssy
& s - 86, G
2" kind of Cardan angles
e cq, S - §,C,
=8 cas +ss cc  css +s6
€SG5S *CS - SC - SS5S *GGH

3kind of Cardan angles

ey ey g

gcncz -S§8S GS *SS§C - 9%8
[Th=& -cs GG, S |
8C +SGS SS -SGC GG H
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4" kind of Cardan angles

gqqcz CGS *SS %%-%3
[Th=¢&s GG, SC g
85C, GSS -SG S5S *GGH

5" kind of Cardan angles

é G.C, G:S, - Shg
[Th=&cs +ssc  cc +55s  sGy
ssxszmsqcz - §C, +CS§S GG

6™ kind of Cardan angles

é GC *SSS GS -§C +%@8
[F=§ s +sscz 6c  §S +566
8 G S - S GG, H
In the technical literature, the angles X,h and z are usualy referred as YAW, PITCH and ROLL
angles. Often the system { yaw-pitch-roll} (5" kind of Cardan angles) is used in vehicle dynamics.

3.3 Euler parameters

Euler demonstrated that the spherical rigid displacement of a body could be obtained by rotating the
body about a fixed axis. Let {u} ={uX u, uz}T be the versor of the positive direction of such

rotation axis, q the angle of rotation, then the Euler parameters’ are defined as follows:

& :cos%,el = uxsin%,e2 =uysin%,e3 = uzsin%, with € +e’ +e +ef =1 normalizing
condition.
The transform matrix has the following form:

g’e§+ef-% €66 - €8 elee+eoezg
[T]=2ge, +ree, €+e5-1 ee-eey
geles'eoez 6,6 66 eo+e3'lu

The matrix can be expressed as the product of two matrices [T] = [E][G]T where
e & -& &0 e € & -6l

u
[El=5e & & -ea; [Gl=ge -& & ey
ge - & &H_ . B8 & -8 &f

1 In 1770 Euler decided to generate through agebra some magic squares whose properties are identical to those of matrix
[T] . He demonstrated that he could parametrize the elements with angles today known as Euler angles. He was not very

satisfied of his discovery because of the presence of trigonometric functions. Thus he looked for a parametrization involving
four parameters only. He must have reached the result in an almost divinatory manner. In fact, he never disclosed the steps
involved in his derivations.
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3.4 Rotation axis and angle of rotation

Given the versor {u} :{uX Uy UZ}T

transition matrix takes the form

of the finite rotation axis and the rotation angle, the

7 2 \
g Uy, +G Ux WV +UzS  UU W - WS 3

—_ 2
[T]=anwy - us Wy 4G Wy +uys
¢ . y
BhUzVy TWS WUV, - Ux§ WY +G

where v, =1- cosy ,q, =cosy ,§, =siny .

3.5 Cayley-Klein parameters
The Cailey-Klein parameters, in terms of Euler angles of thefirst kind, are defined as follows

a=dV 2o p =igl V)2 gnd g zigtv)2gnd.q =it 12 o588
2 2 2 2

where ad - bg =1Thus, the transition matrix takes the form

éfa?-b?-g°-d?) ilg?>-a®+d>-b?) gl-ad U
[T]=gk7+0%- b7~ d?) 1fa>+g”+b?+d?) - ilab +cu)
€ bd-ag i(ag +bd) ad +bg 4

4. Transform formulas
This section summarizes useful relationships to transform one set of body parametersinto another set.

4.1 From Euler anglesto Euler parameters

q ol 1Y
2

& = C0S-CoS y - f

e = snd sn

2

—and oy -
= sin—-cos
-el 2 2

e = cos%sinf Ty

4.2 From Euler parametersto Euler angles

2 2 2 2 2 .

tany =279 gpy £op;tang =N 2VETE rqeon; et =22 %% gg £op

€€ - €,6; € - e +& +6 €€ - €283
4.3 From Euler parametersto Cayley-Klein parameters
a=e+ig,b=e+ig,g=-6 +ig,d =g +ie,
5. Inversion formulas
These formulas allow to obtain the parameters describing the body attitude from the knowledge of the
rotation or transition matrix [T]. Regarding this operation, the following theorem appears useful
\cite{ beggs} : the orientation of body 1 relative to body 2 is uniquely specified by stating the values of
three elements of [T] which liein any two rows, and one of four possible values of afourth element,

chosen so that the four elements do not lie in the same minor, and less than three e ements in a row.
Theword “row” may be replaced by the word “column” throught the theorem.

5.1 Euler angles
Euler angles of the first kind, can be deduced from the elements of [T] by means of the following
expressions:
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. t . t t . t
cos) =ty,sind = +v1- cos’d ; coy =—2-,siny =- - ; cosf =—2_ sinf ==,
& Y Zan Y T Ew snd snJ

Thereisan indeterminacy for J =0.

5.2 Cardan angles
Cardan angles of the first kind, can be deduced from the elements of [T] by means of the following
expressions:

. } t t
sinh =t,,;cosh = +,/1- t:sinz =- —2:cosz = —4—
s 3 cosh cosh

t . t
CoSX = —=2_:gnx =- —2

cosh cosh
thereisan indetermacy for h =&

5.3 Euler parameters
Adopting the Euler parameters, indeterminacy can be avoided by choosing, among those reported in

Table 3, the appropriate set of equations.

Table 3. Inversion Formulasfor Eulersparameters

6?0 e?0 e?0 &?0
€ + 1+t - 1 - U3 t, +1, iy ty- 1y
- 2 4e, 4e, de,
€ t, 1y VLt o - Uy ts +1y ts - U3
! 4e, B 2 e, 4e,
€ t, iy t +1g . 1-tyy -ty +igg t, -ty
4e, 4e, - 2 4e,
€ ty 15 ty - U t, -ty . J1tty +iy +igg
3 4e, 4e, 4e, - 2

5.4 Rotation axis and angle of rotation

. +t, +t,.- 16
Theangle f of rotation is computed by means of the formula f = (:os'lf?11 270" 29 \heress,

e 2 2
for f 1 p , the cartesian components of the rotation axis follow from
— t32 - t23 - t13 - t31 - t21 - t12
X = . Yy — . ,UZ - .
2sinf 2sinf 2sinf

6. Transition matricesfor velocity components

Newton-Euler equations are expressed in terms of the angular velocity components. Thus, these
should be expressed as a function of the derivatives of the body attitude parameters.  The angular

velocity components (WX,Wy,WZ) are those in body fixed coordinates, whereas (Wx ,WY,WZ)are
those in the fixed reference system. The components are related by the following transform

1wy U iw,a

| |
iwy y=[T] fw,y
}WZ b {Wzb
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1. Euler angles
1% kind

10

W, u esmq sinf  cosf oGy i

T . a
|wyy ésmmcosf - sinf Ogiqy

1 ey

tw b g cosq 0 1y

b

2" kind

-0
iw, i & sinncosf  cosf  OGlY i
:wyy— snmeost - sinf Oﬂ:q'y
fw, b g comn 0 1ff4
T p

2. Cardanangles

1% kind
igu
iw, i é cosz 0 Oy Xy
%Wy;’/:g- cosxsinz 1 0,%h;'/
tw,h @snzsmx 0 14!
b
2" kind
-0
1w, u él sinz 0 L‘jl'X'l'
' yy gO COSX C0Sz sinxu|_hy
|Wb € -sinxcosz cosxf
Tp
3 kind
i

W, u ecosh 0 - cosxsinhiXi
| . Ol T
yy—A 0 1 sinx ld,hy
1wb gsinh 0 cosxcosh ff;

Tp

4™ kind

N

iw,ii écoshcosz 0 - sinhgiXi

:Wyly—g - sinz 1 0 l"l|hy

1wb gsnhcosz 0 cosh Hz,

T p
5™ kind
N Jeu
iw,g él 0 - sinh U| |
I, L _é
.._wy.y-go CosSX  Sinx cosh ,|hy
tw,p & -sinx cosx coshpjT
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6™ kind
io0
iw, 0 écosz cosxsinz OuXi
T _é & a: v
iWyy=g Sinz cosx cosz Ou:_h%/
tw,p 8 0 -snx - 1f, 0
1

3. Euler parameters
(W} =2[EP{r}{r} =167 {w}":{w}” =2[G] {r} {r} = 35§ {w}"
{w}“”:{o W, W, WZ}T,{W}(i)={O W, W, WZ}T,{p}={eO e € %}T

7. Conclusions

In this paper have been summarized the classical methods to specify the attitude of a rigid body,
including some ad hoc derived analytical expression. These methods can be used in many fields of
mechanics as well as in computer graphics applications, where there is the need of simulating the
movements of objects.

In particular the proposed formulas can be used to link equations from different models or compare
results from different approaches. They can work as useful recipes for every designer or engineer
involved in kinematic or dynamic analysis.
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