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1. Introduction 
In many fields of classical mechanics there is the need of specifying the attitude of a rigid body. 
Classical examples can be found in the dynamic analysis of gyroscopes, spatial mechanisms. In 
computer graphics the need of simulating the movement of objects, or  the point of view displacement, 
requires a mathematical tool for the representation of the attitude of bodies. The purpose of this paper 
is somewhat tutorial. However, it includes some ad hoc derived analytical expressions. 

2. Mathematical preliminaries 
The attitude of a body relative to another is mathematically defined by a coordinate transformation 
between reference frames attached to each body. Although described through a matrix transformation, 
it is necessary to distinguish between transition and rotation. In particular, with reference to the 
schemes presented in Figure 1: 

• transisition is the process of changing, for the same vector, the attitude of a coordinate 
systems; 

• rotation is the process of changing the attitude of a vector within the same coordinate 
system. 

In order to transit from the initial coordinate system (labelled with subscript 0) to the final coordinate 
system (labelled with subscript 1), we write: 
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Tr    (1), where { } { }Tzyxr 1111 =  and { } { }Tzyxr 0000 = . 

In order to express the new coordinates  (labelled with subscript 1) of the rotated vector in terms of the 
old (labelled with subscript 0) of the same vector prior to rotation, we write: 
{ } [ ] { }0

1
01 rRr =   (2). Spherical motions are usually described by means of the previous tranformation. 

The following relation [ ] [ ]10
1
0 TRT =   (3), can be obtained through inspection. Since all the 

transformations introduced preserve the rigidity, matrix [ ]R  is orthonormal (i.e. 

[ ] [ ] [ ][ ] [ ]IRRRR TT == ). 
In all the subsequent algebraic treatment the cartesian systems are assumed right-handed. Matrices are 
not the only mathematical tools for expressing rotations or change of coordinates. However, for space 
reasons we limit this review to matrix formulas only. 
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3. Review of methods 
In general a minumum of three parameters are required to describe the attitude of a body fixed 
coordinate system o xyz− w.r.t. an inertial O XYZ− coordinate system. However, in some cases, 
redundancy can be used to avoid undeterminacy. 
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Figure 1. Nomencature of angles 

3.1 Euler angles 
Likely this is one of the oldest approach for the description of the body attitude.   The angles are 
defined through an ordered sequence of rotations.   Euler angles involve one body coordinate axis 
twice.   Six sets of Euler angles  can be distinguished.  However, we will focus only on  the sequences 
involving two rotations about the z axis (see Table 1) 
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Table 1: Definition of Euler angles 

Rotatio
n 

First kind Second kind 

1 
0z−ψ  0z−ψ  

2 
1x−θ  1yv −  

3 
2z−φ  2z−φ  

It is not difficult to show that, respectively, the transition matrices are for the first kind of Euler angles: 
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and for the second kind of angles: 
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3.2 Cardan angles 
The three rotations involved in the definition of the Cardan angles are those about each axis of the 
body fixed cartesian reference system. 

Table 2. Definition of Cardan angles 

Rotation 1st kind 2nd kind 3rd kind 4th kind 5th kind 6th kind 
1 

0x−ξ  0y−η  0z−ζ  0x−ξ  0z−ζ  0y−η  

2 
1y−η  1z−ζ  1x−ξ  1z−ζ  1y−η  1x−ξ  

3 
2z−ζ  2x−ξ  2y−η  2y−η  2x−ξ  2z−ζ  

As shown in Table 2, six types of Cardan angles can be enumerated. Thus, the transition matrix, for 
each  enumerated set, is reported in the following: 

• 1st  kind of Cardan angles 

[ ]
















−
+−−
−+

=

ηξηξη

ζηξζξζηξζξζη

ζηξζξζηξζξζη

cccss
ssccssssccsc
cscsscsssccc

T 3
0

 

• 2nd kind of Cardan angles 
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• 3rd kind of Cardan angles 
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• 4th kind of Cardan angles 
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• 5th kind of Cardan angles 
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• 6th kind of Cardan angles 
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In the technical literature, the angles ,  and ξ η ζ  are usually referred as  YAW, PITCH and ROLL 
angles. Often the system {yaw-pitch-roll} (5th kind of Cardan angles) is used in vehicle dynamics. 

3.3 Euler parameters 
Euler demonstrated that the spherical rigid displacement of a body could be obtained by rotating the 
body about a fixed axis. Let { } { }T

zyx uuuu = be the  versor of the positive direction of such 

rotation axis, θ  the angle of rotation, then  the Euler parameters1 are defined as follows: 
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The transform matrix has the following form: 
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The matrix can be expressed as the product of two matrices [ ] [ ][ ]TGET = where 
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1 In 1770 Euler decided to generate through algebra some magic squares whose properties are identical to those of matrix 

[ ]T . He demonstrated that he could parametrize the elements with angles today known as Euler angles. He was not very 

satisfied of his discovery because of the presence of trigonometric functions. Thus he looked for a parametrization involving 
four parameters only. He must have reached the result in an almost divinatory manner. In fact, he never disclosed the steps 
involved in his derivations. 
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3.4 Rotation axis and angle of rotation 

Given the versor { } { }T
ZYX uuuu =  of the finite rotation axis and the rotation angle, the 

transition matrix takes the form 
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where ψψψ ψψ sin,cos,cos1 ==−=Ψ scv . 

3.5 Cayley-Klein parameters 
The Cailey-Klein parameters, in terms of Euler angles of the first kind, are defined as follows 

( ) ( ) ( ) ( )/ 2 / 2 / 2 / 2cos ; sin ; sin ; cos
2 2 2 2
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where 1αδ βγ− = Thus, the transition matrix takes the form 
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4. Transform formulas 
This section summarizes useful relationships to transform one set of body parameters into another set. 

4.1 From Euler angles to Euler parameters 
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4.2 From Euler parameters to Euler angles 
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4.3 From Euler parameters to Cayley-Klein parameters 

30121210 ,,, ieeieeieeiee +=+−=+=+= δγβα  

5. Inversion formulas 
These formulas allow to obtain the parameters describing the body attitude from the knowledge of the 
rotation or transition matrix [ ]T .  Regarding this operation, the following theorem appears useful 

\cite{beggs}: the orientation of body 1 relative to body 2 is uniquely specified by stating the values of 
three elements of [ ]T  which lie in any two rows, and one of four possible values of a fourth  element, 

chosen so that the four elements do not lie in the same minor, and less than three elements in a row. 
The word “row” may be replaced by the word “column” throught the theorem. 

5.1 Euler angles 

Euler angles of the first kind, can be deduced from the elements of [ ]T  by means of the following 

expressions: 
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5.2 Cardan angles 

Cardan angles of the first kind, can be deduced from the elements of [ ]T  by means of the following 

expressions: 
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5.3 Euler parameters 
Adopting the Euler parameters, indeterminacy can be avoided by choosing, among those reported in 
Table 3, the appropriate set of equations. 

Table 3. Inversion Formulas for Eulers parameters 
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5.4 Rotation axis and angle of rotation 

The angle φ of rotation is computed by means of the formula 
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6. Transition matrices for velocity components 
Newton-Euler equations are expressed in terms of the angular velocity components. Thus, these 
should be expressed as a function of the derivatives of the body attitude parameters.    The angular 
velocity components ( ), ,x y zω ω ω  are those in body fixed coordinates, whereas ( ), ,X Y Zω ω ω are 

those in the fixed reference system. The components are related by the following transform 
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1. Euler angles 
• 1st  kind 
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• 2nd  kind 
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2. Cardan angles 

 
• 1st  kind 




































−=















.

.

.

10
01cos
00cos

ζ

η

ξ

ξζ
ζξ

ζ

ω
ω
ω

sinsin
sin

z

y

x

 

• 2nd  kind 
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• 3rd  kind 
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• 4th  kind 
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• 5th  kind 
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• 6th  kind 
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3. Euler parameters 
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7. Conclusions 
In this paper have been summarized the classical methods to specify the attitude of a rigid body, 
including some ad hoc derived analytical expression. These methods can be used in many fields of 
mechanics as well as in computer graphics applications, where there is the need of simulating the 
movements of objects.  
In particular the proposed formulas can be used to link equations from different models or compare 
results from different approaches. They can work as useful recipes for every designer or engineer 
involved in kinematic or dynamic analysis.       
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