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However, the potential of using different metamodelling techniques and thus making the knowledge 
acquisition component more flexible could only be revealed if SLASSY was able to choose the best 
fitting learning algorithm by itself without the intervention of the designer or a third party. A KDD-
process model for that purpose was not available so it was developed within this research project and 
implemented in SLASSY [Breitsprecher and Wartzack 2012]. 

3. Gaussian processes for machine learning 
A Gaussian process in general is a multivariate Gaussian distributions consisting of an infinite amount 
of random variables, any finite number of which are normal distributed. Therefore this stochastic 
process is fully specified by a mean and a covariance function. In a one-dimensional normal 
distribution with one input and one output quantity overall only scalars are given for the mean value 
and covariance. For higher dimensions the normal distribution is defined by a mean vector of and a 
covariance matrix whereas the Gaussian process is defined over functions: For the function f which is 
distributed as a Gaussian process with mean function m  and covariance function k  we write  

 ,~f GP m k   (1) 
This function shall now be demonstrated by an example. An argument x  is used to index the 
individual random variables  f x  in an infinite vector. The Gaussian process is defined by the 
functions 

     
221 1 and , exp

4 2
x x km x x x x 

     
 

 (2) 

In order to illustrate the behaviour of the resulting stochastic function we generate some samples for a 
distinct finite number n  of random variables. Therefor the index set is enumerated by the natural 
numbers for a given domain resulting in a regular Gaussian distribution defined by the vector of mean 
and covariance matrix: 

     
221 1

 and , exp ;  
4

  ,  ,
2i i i j i jx k x x x x i jm i nx j

      
 
 
 

 (3) 

Indexed by the argument ix  the normal distributed function values  
i

f x  are stored in a random vector  

 ,~f m K  (4) 

For 3n   variables this vector results in three samples (see Figure 3), generated in MATLAB. Note 
that these “point clouds” will look different if they were drawn a second time, a third one and so one. 
Although one could think of three different functions, the course of each point cloud shall not be 
interpreted as such. Imagine it rather as lots of Gaussian distributions at different values of xi. For 
      this distribution consist for example of the three values  ( )  [            ] (see arrows in 
Figure 4). For a higher number of   each distribution will consist of more samples. 
To use Gaussian process for machine learning at first a prior has to be determined. Based on the mean 
and covariance functions the task of a prior is to define assumptions and properties of a stochastic 
function independent of training data, e.g. the course of the function in figure 1 seem to be quadratic. 
Subsequently the prior has to be adapted to a set of training data. After the Gaussian process has been 
trained with this data set, the posterior defines a mean function and the covariance matrix. This 
covariance function can be tuned via specific (mathematical) properties. Leaving mathematical 
sophistications aside the problem of learning in Gaussian processes is exactly the problem of finding 
suitable properties for the covariance function. 
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) for each simulation run. Tab
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There are further variant of SDF which are analysed within different studies.

Table 1. Input and output parameters of the case study
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knowledge from this data we set up a KDD
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model of the simulated use case manufacturing process

this parameter variation study were
that can be influenced by the design engineer
for our use case we chose the forming force that was calculated by the simulation system (Simufact 

) for each simulation run. Table 1 shows an overview of the
The index “X” denotes that this is a parameter from a SDF, the index “T0” denotes the SDF “Teeth 

There are further variant of SDF which are analysed within different studies.

Input and output parameters of the case study
 Unit
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radius at tooth addendum mm
kN

We created a total data set of 162 samples with Design for Experiment methods [
some simulations did not converge due to 

) and that gave us a final data 
To show the advantage of Gaussian processes 
knowledge from this data we set up a KDD-process in RapidMiner
have been used within the self-learning component of SLASSY.

a sample ratio. At a sample ratio of 
final data set are used for the KDD-process training. Decreasing this ratio

size, i.e. 121 
The sample ratio is decreased 
is used to train both the 

implemented tool.

defined differently. Between the contact bodies blank and die a friction factor of 0.3 was 
definition of the friction factor between the contact bodies blank and punch represents a special 
characteristic because the punch was partitioned into two sectors to influence the mould filling and the 

signed with a friction factor of 0.05 for the increase of the 
mould filling, whereas the sector “punch 2” was assigned with a friction factor of 0.3 for the reduction 
of the punch force as well as for the increase of the mould filling. The semifinished par
blank with a thickness of 2 mm and with the material characteristics of DC04.

model of the simulated use case manufacturing process

this parameter variation study were
that can be influenced by the design engineer (see Table 1)
for our use case we chose the forming force that was calculated by the simulation system (Simufact 

le 1 shows an overview of the
parameter from a SDF, the index “T0” denotes the SDF “Teeth 

There are further variant of SDF which are analysed within different studies.

Input and output parameters of the case study

Unit Input / 
output 

 input 
mm input 
mm input 
mm input 
mm input 
kN output 

with Design for Experiment methods [
some simulations did not converge due to typical errors (e.g. re

) and that gave us a final data 
To show the advantage of Gaussian processes for acquiring manufacturing

process in RapidMiner
learning component of SLASSY.

a sample ratio. At a sample ratio of 
process training. Decreasing this ratio

 samples, is randomly drawn from the final data set and 
The sample ratio is decreased 
is used to train both the 

implemented tool. 

defined differently. Between the contact bodies blank and die a friction factor of 0.3 was 
definition of the friction factor between the contact bodies blank and punch represents a special 
characteristic because the punch was partitioned into two sectors to influence the mould filling and the 

signed with a friction factor of 0.05 for the increase of the 
mould filling, whereas the sector “punch 2” was assigned with a friction factor of 0.3 for the reduction 
of the punch force as well as for the increase of the mould filling. The semifinished par

terial characteristics of DC04.

model of the simulated use case manufacturing process

this parameter variation study were a selection of product
Table 1). As an exemplary

for our use case we chose the forming force that was calculated by the simulation system (Simufact 
le 1 shows an overview of the

parameter from a SDF, the index “T0” denotes the SDF “Teeth 
There are further variant of SDF which are analysed within different studies.

Input and output parameters of the case study
 Mean w.r.t. 

the data set
55.833 
2.500 
2.750 
0.600 
0.367 
1905 

with Design for Experiment methods [
errors (e.g. re-

) and that gave us a final data set of 151 samples
for acquiring manufacturing

process in RapidMiner® to train common metamodels that 
learning component of SLASSY.

a sample ratio. At a sample ratio of ݏ
process training. Decreasing this ratio

, is randomly drawn from the final data set and 
The sample ratio is decreased iteratively 
is used to train both the common metamodels in RapidMiner

defined differently. Between the contact bodies blank and die a friction factor of 0.3 was 
definition of the friction factor between the contact bodies blank and punch represents a special 
characteristic because the punch was partitioned into two sectors to influence the mould filling and the 

signed with a friction factor of 0.05 for the increase of the 
mould filling, whereas the sector “punch 2” was assigned with a friction factor of 0.3 for the reduction 
of the punch force as well as for the increase of the mould filling. The semifinished par

terial characteristics of DC04. 

 
model of the simulated use case manufacturing process

a selection of product
exemplary simulation output

for our use case we chose the forming force that was calculated by the simulation system (Simufact 
le 1 shows an overview of the input and output parameters.

parameter from a SDF, the index “T0” denotes the SDF “Teeth 
There are further variant of SDF which are analysed within different studies.

Input and output parameters of the case study 
Mean w.r.t.  
the data set 

Standard
deviation 

 3.128
 0.410
 0.251
 0.246
 0.170

287.93

with Design for Experiment methods [Fisher 1990
-meshing problems

set of 151 samples. 
for acquiring manufacturing-related and design

to train common metamodels that 
learning component of SLASSY. The KDD-

ݏ = 1.0 all 151 samples from the 
process training. Decreasing this ratio, i.e. to ݏ

, is randomly drawn from the final data set and 
iteratively until it re

common metamodels in RapidMiner

defined differently. Between the contact bodies blank and die a friction factor of 0.3 was defined. The 
definition of the friction factor between the contact bodies blank and punch represents a special 
characteristic because the punch was partitioned into two sectors to influence the mould filling and the 

signed with a friction factor of 0.05 for the increase of the 
mould filling, whereas the sector “punch 2” was assigned with a friction factor of 0.3 for the reduction 
of the punch force as well as for the increase of the mould filling. The semifinished part was a circular 

model of the simulated use case manufacturing process 

a selection of product characteristics 
simulation output

for our use case we chose the forming force that was calculated by the simulation system (Simufact 
input and output parameters.

parameter from a SDF, the index “T0” denotes the SDF “Teeth 
There are further variant of SDF which are analysed within different studies. 

 
Standard 
deviation  Range

3.128 [52.5 ; 60.0]
0.410 [2.0 ; 3.0 ]
0.251 [2.5; 3.0]
0.246 [0.3 ; 0.9]
0.170 [0.2 ; 0.6 ]

287.93 [2567 ; 1233]

Fisher 1990] 
problems, lost contact 
 

related and design
to train common metamodels that 

-process includes an 
all 151 samples from the 

ݏ = 0.8, means that
, is randomly drawn from the final data set and 

until it reaches a minimum of
common metamodels in RapidMiner

defined. The 
definition of the friction factor between the contact bodies blank and punch represents a special 
characteristic because the punch was partitioned into two sectors to influence the mould filling and the 

signed with a friction factor of 0.05 for the increase of the 
mould filling, whereas the sector “punch 2” was assigned with a friction factor of 0.3 for the reduction 

t was a circular 

characteristics 
simulation output (ݕ௝) 

for our use case we chose the forming force that was calculated by the simulation system (Simufact 
input and output parameters. 

parameter from a SDF, the index “T0” denotes the SDF “Teeth 

Range 

[52.5 ; 60.0] 
[2.0 ; 3.0 ] 
[2.5; 3.0] 
[0.3 ; 0.9] 
[0.2 ; 0.6 ] 

[2567 ; 1233] 

] whereas 
, lost contact 

related and design-relevant 
to train common metamodels that 

process includes an 
all 151 samples from the 

, means that a 
, is randomly drawn from the final data set and 

aches a minimum of 
common metamodels in RapidMiner® and a 

1738 DESIGN INFORMATION AND KNOWLEDGE



 

To evaluate the prediction quality of each iteration we use the procedure of k-fold cross-validation. 
The k-fold cross-validation splits the dataset randomly into k approximately equal disjoint subsets. 
The learning procedure is executed r-times in which per procedure one subset is used for testing and 
the remainder is used for training. Finally, the resulting k error estimates are summarized and averaged 
to the total error estimate [Tan et al. 2006]. According to [Vercellis 2009] the recommended value for 
k is 10. For a more reliable error estimate, the 10-fold cross-validation is repeated ten times which 
leads to a ten-times ten-fold cross validation [Witten and Eibe 2011], [Küstner et al. 2013]. As error 
estimate we propose the root mean squared error (RMSE) because it is a good quality measure to 
compare prediction errors of different metamodels for a particular output [Evans 1996]. 
Figure 6 shows the root mean squared error of our common metamodels and the Gaussian process 
trained with the implemented tool. 

 
Figure 6. The RMSE of different metamodels for decreasing data sets shows that Gaussian 

processes intend to offer a smaller prediction error 

It can be seen that the prediction quality of every metamodel decreases while the sample ratio 
decreases and Gaussian processes are basically no exception from this tendency. However, eye-
catching is that Gaussian processes tend to offer a smaller prediction error while our common 
metamodels keep stable in the area of 0.8	 ≤ 	ݏ ≤ 0.4. Within this area our Gaussian process tool tries 
to fit the model to the decreased data set by varying the prior and thus enabling a dynamic adaption. 
Only for 30% of the initial data set size (and less) the Gaussian process joins up to the prediction error 
of the other metamodels and performs quite bad, too. Especially the behaviour in the medium range 
motivates us to include Gaussian processes in order to make SLASSY and its knowledge acquisition 
component more flexible. 

5. Summary and outlook 
Within the research for new metamodelling techniques the so called Gaussian processes showed 
potential to acquire reliable prediction models even from small data sets. With some effort they were 
utilized and a computer-aided tool was developed to automatically train a Gaussian process. We used 
our tool for different simulation data whereas a data set from the SBMF-process “deep drawing – 
extrusion” was taken for a short case study to compare some common metamodels and a trained 
Gaussian process. We could show, that the Gaussian process was able to predict with a higher 
accuracy for decreased data sets until the sample ratio reached a critical value. At this point all 
metamodels showed a high prediction error. 
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An interesting property of Gaussian processes motivates further research that can decrease the effort 
for the manufacturing parameter variation studies. Beside the predicted value e.g. for the forming 
force, a Gaussian process outputs an uncertainty of the prediction at the specific point where the 
prediction was made, that is, we have local prediction error. This separates a Gaussian process from 
other metamodels which always offer a global prediction error. The derived research question for our 
further work is now: Is it possible to find a position where the local prediction error of the Gaussian 
process model has a maximum and to derive a set up for the input values at this point? This would lead 
us to a method for adaptive sampling where the simulation set up is not fixed from the beginning but is 
dynamically adapted for each simulation or experiment run. Loosely speaking the information 
retrieval per simulation is improved and reliable metamodels are acquired with less simulation. 
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