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Abstract: Computational models can be used to study product design processes. We 

propose an agent-based simulation model that incorporates, first, the role of design 

parties involved, second, their design activities to drive the product towards a design 

goal, and, third, a product model based on a so-called attribute dependency graph. A 

carefully tailored data model is presented for two roles, a system designer and a 

component designer, and their specific activities. The performance of the resulting 

development processes is measured by the time needed to reach the overall design 

goal. The model is applied to the design of an electric vehicle battery pack consisting 

of two components that are developed separately by a total of four parties. The results 

show plausible interaction between the design parties and how uncoordinated activity 

by one party can decrease process performance.   

Keywords: design process, distributed design, process simulation  

1 Introduction 

Successful product development is essential for many companies to stay competitive and 

profitable. It can be characterized by a short development time, high product quality and 

low cost accumulation (Ulrich, 2016). As all of those three factors are closely linked to the 

design process and in particular to the order of design activities, rearranging, adding or 

removing certain design tasks can lead to a better product development performance. 

(Chanron, 2004). However, predicting the effects of modified design processes in advance 

is quite challenging, because computational models need to reflect the complexity and 

irregularity of real design processes. These real-life circumstances exist for several reasons. 

One major reason is the attempt to fulfill many, often times contradictory requirements 

linked to quantities of interest at the system level. These quantities of interest depend on 

multiple design variables, which need to be adjusted properly by the various design parties 

involved in order to accomplish all design goals (Zimmermann, 2017). Computational 

models of product design processes need to represent these functional interdependencies 

in detail. A common approach regarding this matter is to allocate design variables and 

quantities of interest to individual decision makers, who are part of a game-theoretic 

simulation (Lewis, 1997) or an agent-based model (Hulse, 2018). Many products are also 

being developed in a distributed environment, which further increases the complexity 

(Königs, 2016). This can lead to a limited communication between parties and an additional 

effort to integrate all subsystem solutions. If information between distributed design parties 

is not shared on a regular basis it also may happen that the design work of one party is 

based on an obsolete status of another parties design work. This effect has already been 

investigated by the use of an agent-based model (Wöhr, 2020).  
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Another reason for complexity, which has not been considered in many computational 

models yet, is the presence of different engineering roles. Especially since many products 

are being developed by multidisciplinary teams following the leadership of a systems 

engineer this might be an important factor. Hence, this paper investigates the impact of 

different engineering roles in distributed design processes by the use of an agent-based 

model in order to improve understanding and enhance simulation model accuracy. For this 

purpose a data model is presented and the behaviour of a System Designer is described 

mathematically. The application is shown for the design of an electric vehicle battery pack. 

This paper is organized as follows: Chapter 2 reviews the current state of the art with 

respect to engineering roles in design processes. In Chapter 3 the design process model is 

introduced. The simulation method is explained in Chapter 4. Chapter 5 illustrates the 

technical details of an electric vehicle battery pack. Results of the study are presented in 

Chapter 6 followed by the Conclusion and Outlook, which are drawn in Chapter 7 and 8. 

2 State of the Art 

2.1 Engineering Roles 

As products grow in size and complexity they are most likely being developed by a team, 

which consists of highly specialized engineers and professionals. An example for such a 

multidisciplinary team can be found in (Ulrich, 2016). Besides a typical Team Leader the 

authors suggest a Mechanical Designer, Electronics Designer, Industrial Designer, 

Manufacturing Engineer, Purchasing Specialist and Marketing Professional. Thus, every 

role in the team is responsible for a discipline-specific design goal, which needs to be 

accomplished. A list of roles, which are normally used in systems engineering is provided 

by (Sheard, 1996). Among others the authors suggest a System Designer, Requirement 

Owner, System Analyst, Technical Manager and Coordinator. Due to the holistic character 

of systems engineering those roles are more general and tend to represent product design 

from a different, rather superficial, perspective. A very detailed description of a Systems 

Engineer can be found in (NASA, 2007). According to the authors this role coordinates, 

monitors and directs all activities of a systems engineering team in order to ensure that the 

technical requirements of a system are fully satisfied. This involves evaluating design 

trade-offs, balancing technical risks and allocating requirements.  

In summary, two small findings can be presented. First, there is no uniform description or 

standardized documentation of engineering roles. This is most likely due to the fact that 

every engineering project has unique characteristics and therefore individual role 

preferences. Second, a distinction between designers who operate on the system level (e.g. 

Systems Engineer) and others who operate on the component level (e.g. Mechanical 

Designer) can be made. The interaction between those roles is subject of the present study. 

2.2 Modeling Design Processes 

In general, many modeling techniques can be used to analyze design processes, like System 

Dynamics or Network Theory. Each of them provides individual strengths depending on 

the scope of investigation. Matrix-based methods, like the Design Structure Matrix or 

Multiple Domain Matrix, can be used to study complex design processes as well (Eppinger, 
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2012). Especially in case of many interrelated process elements (components, people, 

activities) they provide a powerful tool to document and visualize dependencies in order to 

improve transparency and understanding. Furthermore, rearranging certain rows and 

columns or clustering nearby matrix entries might lead to a more efficient design process 

in terms of development time or product quality. In order to cover the various forms of 

complexity which are mentioned above, however, agent-based models are most promising. 

Especially since they allow modeling of human behaviour on a micro level and 

simultaneously evaluating the process performance on a macro level. Many aspects of 

design processes, like solidarity (Canbaz, 2014) or learning (Hulse, 2018) have already 

been studied by the use of such models. Engineering roles, however, have not been part of 

any noticeable research and, thus, shall be examined in this paper. 

3 Design Process Model  

In order to decompose and analyze distributed design processes, which include roles, a 

formalized representation of all relevant objects and their relation is required. This can be 

achieved by establishing a data model of the design process according to the Unified 

Modeling Language Notation, see (Weilkiens, 2008). Such a data model (Class Diagram) 

is displayed in Figure 1. It serves as an orientation for the following chapters of the paper. 

 

Figure 1. Data (Role-Activity-Product) Model of the Design Process 

An essential part of the model is the representation of a system, like a product or a 

component, which can include multiple subsystems. The technical characteristics of such 

a system can be described by a certain number of attribute dependency graphs, see 

(Zimmermann, 2017). According to the notation of the formalism attributes, like design 

variables or quantities of interest, are displayed as vertices while functional dependencies 

between them are displayed as directed edges. Such a graph (see Figure 2) is hierarchically 

organized and allows the distinction between different product design levels. In case of a 

standard design scenario those levels can be called component level (bottom), subsystem 

level (middle) and system level (top). Design scenarios, which include more complexity 

and, thus, more attributes as well as dependencies, may contain multiple subsystem levels 
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between the bottom and top. Every attribute has a value and is linked to a requirement with 

an upper and lower limit. In total there are five activities, which interrelate with those three 

numerical quantities (attribute value, upper and lower requirement) as follows:  

- Change Design (CD): increases or decreases the value of an attribute. This is 

supposed to represent the work of an engineer, who tries to improve his component 

performance by adjusting a design variable. From an industrial perspective this could 

be changing a CAD-file or modifying a part drawing. Different models of how 

engineers may behave during this task are presented in (Gurnani, 2008; Wöhr, 2020).  

- Quantify Design (QD): determines the value of an attribute based on the values of all 

other attributes which are connected to this element of the graph through a functional 

dependency. In comparison to real design processes this could be the analysis of some 

product performance by the use of a computational model (e.g. finite-element 

simulation), prototype experiment (hardware) or an expert assessment.  

- Evaluate Design (ED): examines whether the value of an attribute lies between the 

upper and lower limit of its requirement. This represents an engineer, who evaluates 

to what extend the component performance he is responsible for has already reached 

the associated design goal. In reality this occurs if simulations have been conducted 

and the results need to be checked with respect to whether or not they are satisfying. 

- Define Requirement (DR): changes the upper and lower limit of a requirement. This 

symbolizes the dynamic variation of requirements while technical trade-offs between 

subsystems are balanced and risks are managed. Most often this activity is carried out 

by engineers, who oversee the system performance and lead the process. A theoretical 

model of how engineers may behave during this task is presented in the Chapter 4.2. 

- Share Information (SI): communicates the value of an attribute and the limits of its 

requirement to other design parties. Addressing the importance of information 

exchange in distributed design processes, this activity represents the interaction 

between departments, teams and individuals. In reality information exchange may 

happen as a result of a personal conversation, team meeting or a data / file exchange. 

However, not all of those activities are executed by the same engineering role. In this paper 

we assume that a Component Designer carries out certain design activities at the 

component (CD) and subsystem level (QD, ED and SI) while a System Designer executes 

certain design tasks at the subsystem (QD, ED, SI and DR) and system level (QD and ED). 

Every engineering role is occupied by a party (e.g. individual, team or department), whose 

design behaviour can be described mathematically. Each of the parties is linked to a certain 

number of attributes, which in sum define the scope of responsibility of the corresponding 

party. Each attribute within a graph must be exactly in one parties scope of responsibility. 

4 Simulation  

4.1 Agent-based Model 

While the data model presented above focuses on representation and understanding, the 

computation of such a socio-technical system requires an additional simulation routine. In 

this paper we use a simplified agent-based model in order to represent and simulate the 

distributed decision makers, who try to solve a complex design problem in collaboration.  
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Yet, the model is rule-based, deterministic and quantitative. Due to simplicity learning of 

the agents is not included. Human design behaviour is described by mathematical formulae. 

An illustration of the model including three design parties is shown in Figure 2. 

 

Figure 2. Agent-based model including an attribute dependency graph 

Due to simplicity we assume that all of the activities a party is responsible for can only be 

executed in combination. Hence, we call this a design step. In general all parties included 

by the model try to reach their design goals by adjusting certain design variables they are 

responsible for or by formulating requirements to the next lower level (Equation 1). 

Furthermore some of the parties have to consider certain constraints as well (Equation 2). 𝑧𝑖,𝑙 ≤ 𝑧𝑖(𝒚) ≤ 𝑧𝑖,𝑢   &   𝑦𝑖,𝑙 ≤ 𝑦𝑖(𝒙) ≤ 𝑦𝑖,𝑢     (1)         

Subject to:  𝑔𝑗(𝒙) ≤ 0    𝑗 = (1, … ,𝑚)     (2) 

Since a Component Designer has to select a combination of values for his design variables 

every time a design step is being carried out, a theoretical model for the corresponding 

design behaviour is required. Most of the common models, which originate from the field 

of game theory, assume rational or bounded rational behaviour, see (Lewis, 1997; Gurnani 

2008). A gradient-based model, however, includes the time parties need to find a local 

solution (Wöhr, 2020). While this effect can be observed in reality as well the model is 

used for the present study. A different assumption regarding the human design behaviour 

could impact the results significantly, however, this will not be studied. In case of a multi-

objective design scenario (not displayed in Figure 2) the model needs to be combined with 

an optimization strategy. In this paper a so-called worst case scheme is used (Equation 3): 

 𝑚𝑎𝑥 {𝑦𝑖−𝑦𝑖,𝑙𝑦𝑖,𝑙 , 𝑦𝑖−𝑦𝑖,𝑢𝑦𝑖,𝑢 , 𝑦𝑖+1−𝑦𝑖+1,𝑙𝑦𝑖,𝑙  , … }     (3) 

Hence, the combination of values a Component Designer selects every time a design step 

is being carried out depends on the distance between the performance of the current design 

and the requirements, which have not been reached yet. The number of design steps every 

party is executing over the course of a design process is labelled as 𝑛 (e.g. 𝑛𝐴 for Party A). 
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4.2 Behaviour of a System Designer 

Besides describing the behaviour of a Component Designer, it is necessary to develop an 

additional model, which defines how a System Designer derives requirements every time 

a design step is being carried out (see: Define Requirement). In particular the dynamic 

change of subsystem requirements depending on the solution offered by the Component 

Designers needs to be described mathematically. Such a model is shown in Figure 3 below. 

 

Figure 3. Distance-based behaviour of a System Designer 

On the left side of Figure 3 a simple design scenario is displayed, which supports the 

explanation of the model. While both red areas do not include any satisfying design, the 

white area in between represents the complete solution space. Each system variable 

(𝑦  and 𝑦 ) is defined by a Component Designer, who tries to fulfill the associated design 

goal. The boundaries of the green box to the left side (center: 𝑦 ,𝑐, 𝑦 ,𝑐) symbolize the 

corresponding upper and lower requirement at the start. Both, the position and shape of the 

box, are controlled by the System Designer. Assume the solution of both Component 

Designers (𝑦 ,𝑠, 𝑦 ,𝑠) has converged (criteria: ℎ𝑖) and is not located inside of the given box 

due to constraints that may have been reached. As a result, the System Designer has to 

adjust the upper and lower requirement of both system variables in order to facilitate the 

design work of both Component Designers. According to the model this is achieved by 

moving the center of the box to the position within the complete solution space, which is 

the closest to the current subsystem solution (𝑦 ,𝑐,𝑚𝑖𝑛 , 𝑦 ,𝑐,𝑚𝑖𝑛). If the upper or lower limit 

of a system variable is reached, the box is located right at the border. An adjustment of the 

box-shape is not performed. However, the model includes a parameter, which determines 

how far the box is moved towards the optimal position within the complete solution space 

(𝛿). This can be interpreted as the caution of a System Designer, who has to change 

multiple requirements at once while operating in a highly complex engineering 

environment. As a description for the human behaviour we call it “distance-based-model.” 

5 Industrial Example  

5.1 Technical Description 

Electromobility causes major difficulties for car manufacturers due to the fact that many 

unknown technologies have to be applied in combination. In particular the design of an 
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electric vehicle battery pack is challenging since two highly interdependent systems need 

to be fitted into a tight assembly space. In this paper a simplified model of the battery pack, 

shown in Figure 4, is used to simulate and analyze different design process scenarios. 

 

Figure 4. Model of an Electric Vehicle Battery Pack  

Inside of the housing (𝐻𝐻), which serves as a geometrical constraint, multiple batteries 

(height: 𝐻𝐵; power density: 𝜑𝐵) are joint together to provide electrical power (𝑃𝐸). Since 

they are generating heat (�̇�𝐵) a thermal cooling system (height: 𝐻𝐶 ; fluid velocity: 𝑣𝐶) is 

installed as well. However, to ensure a sufficient heat flux leaving the system (�̇�𝐶) the 

cooling requires a certain mechanical power (𝑃𝑀) too. The system power (𝑃𝑠𝑦𝑠), which is 

necessary for the vehicle propulsion and drive, can be determined as follows (Equation 4): 𝑃𝑠𝑦𝑠 = 𝑃𝐸  𝑃𝑀         (4) 

In this paper, we define a requirement for the system power (150𝑘𝑊 ≤ 𝑃𝑠𝑦𝑠 ≤ 250𝑘𝑊), 

which is comparable to reality and does not change over the course of the design process. 

The remaining heat flux (�̇�𝑠𝑦𝑠) entering or leaving the system is defined as (Equation 5):  �̇�𝑠𝑦𝑠 = �̇�𝐵  �̇�𝐶          (5) 

To prevent thermal overheating or efficiency losses due to a cold battery, we define a 

requirement for the remaining heat flux ( 5𝑘𝑊 ≤ �̇�𝑠𝑦𝑠 ≤ 5𝑘𝑊), which shall be constant. 

The electrical power and heat flux every battery is generating is related to its volume (𝑉𝐵) 

and power density (𝑃𝐸~𝜑𝐵𝑉𝐵; �̇�B~�̇�𝐵𝑉𝐵) as we assume that the heat generation rate (�̇�𝐵) is 

linear proportional to the power density. On the other hand, the mechanical power and heat 

flux of the thermal cooling system is related to the volume flow rate (�̇�C), pressure drop 

(Δ𝑝𝐶) and temperature gradient (Δ𝑇𝐶) inside of the channel (𝑃𝑀~ Δ𝑝𝐶�̇�C; �̇�C~Δ𝑇𝐶�̇�C), while 

the pressure drop is a function of the fluid velocity (𝑣𝐶) and volume flow rate (�̇�C). 

5.2 Distribution of Engineering Roles 

In alignment with reality we assume that multiple design parties are involved in the design 

process of an electric vehicle battery pack. The distribution of engineering roles and 

allocation of design variables & quantities of interest to different design parties is shown 

in Figure 5. At the top level of the attribute dependency graph (left side of Figure 5) two 

different design parties are responsible for the system power and the remaining heat flux 

(Part A and Party B). As System Designers they both try to accomplish their design goals 

by formulating subsystem requirements. The battery pack and the layout of the thermal 

cooling system is being designed by two other parties (Component Designers), who use 

their design variables at the bottom level to reach their design goals (Party C and Party D).  
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Figure 5. Distribution of roles / variables in an attribute dependency graph (left) and MDM (right) 

All of the design variables can only be varied within a certain interval. On the right side of 

Figure 5 the socio-technical system is shown as a Multiple Domain Matrix, which provides 

a comprehensive documentation of all relevant elements and their relations. This improves 

the understanding for the complex dependencies between design parties, engineering roles 

and design variables as their interaction becomes heavily unintelligible.  

6 Results 

6.1 Simulation Setup  

Now, the data model (Chapter 3) and simulation method (Chapter 4) is applied to the 

industrial example (Chapter 5). In order to study different design process scenarios, the 

number of design steps carried out by the four parties is being varied. Due to simplicity, 

we assume that the number of design steps carried out by Party A and B as well as C and 

D have to match (𝑛𝐴 = 𝑛𝐵; 𝑛𝐶 = 𝑛 )  All other factors are constant (𝛿 = 1; ℎ = 0.3). The 

numerical step size of both Component Designers and their initial guess at the start of the 

design process can be seen as a realistic assumption. Every simulation run has one hundred 

discrete time steps. All design steps of the four parties are equally distributed over time. 

6.2 Detailed Analysis 

First, a single design process is analyzed in detail in order to gain an understanding for the 

complex mechanisms behind. The evolution of system variables (blue markers) and 

requirements (green boxes) for (𝑛𝐴 = 𝑛𝐵= 3; 𝑛𝐶 = 𝑛 = 25) is displayed in Figure 6 below. 

 

Figure 6. Evolution of system variables and requirements for (𝑛𝐴= 𝑛𝐵= 3; 𝑛𝐶= 𝑛 = 25) 
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In both graphics the moments of requirement changes are marked with   ,    and   . It turns 

out, that the initial requirements lead to a solution for the remaining heat flux, which almost 

lies in the specified box (  ). However, the design goal for the system power is not reached 

at all. Thus, both System Designers, especially Party A, adapt their requirements. This 

facilitates the finding of a better solution for the system power, however, it also moves the 

current design further away from the required remaining heat flux (  ). After another 

adjustment of the requirements, the design of Party C and D converges towards a satisfying 

solution for the system power and remaining heat flux (  ). In total, it takes them eighty-

five time steps to reach the specified boxes. This illustrates how complex and dynamic a 

distributed design process can become, if multiple engineering roles interact. However, this 

only represents a single design process, without the intention to generalize. 

6.3 Parameter Study 

For a more comprehensive analysis of the dynamics a parameter study is carried out. In 

this study the number of design steps carried out by Party A and B as well as C and D is 

varied within a certain interval. The process performance is assessed by the number of time 

steps both Component Designers need to find a solution, which lies inside of the both boxes 

( ). The results of the study, presented as contour lines, are shown in Figure 7 below.  

 

Figure 7. Development time depending on the number of design steps with 𝑛𝐴 = 𝑛𝐵  and  𝑛𝐶 = 𝑛    

Both factors, which have been varied, show a strong coupling as their interdependency 

forms multiple Pareto frontiers. These lines reveal, that in some cases more requirement 

changes carried out by the System Designers lead to a lower process performance. 

Furthermore, they indicate, that at least one requirement change has to be carried out, so 

that both Component Designers can find a satisfying solution in time. The best process 

performance is reached if all design parties involved carry out a high number of design 

steps. Although these results provide quantitative information, they only represent a single 

design scenario under the assumption of multiple simplifications. Numerical optimization 

techniques as used in multidisciplinary design optimization cannot improve the results 

further, unless there are stricter requirements or targets. 
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7 Conclusion 

In this paper a data model was introduced, which includes multiple engineering roles and 

their associated design activities. Combined with an agent-based model this allows the 

computational investigation of design processes with different roles. The application to the 

design process of an electric vehicle battery pack revealed, that both, the number of design 

steps carried out by the Component Designers and the number of design steps carried out 

by the System Designers impact the product development time. 

8 Outlook 

Future work will focus on the integration of additional engineering roles and the empirical 

validation. For this purpose a multi-actor experiment will be carried out under controlled 

conditions and the observed human behaviour may be used in order to calibrate the 

simulation on a micro scale. Furthermore, a study will be directed towards the question, 

whether the design process can be improved by clustering the MDM shown in Figure 5. 
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